陪洗布对针织物尺寸稳定性的影响

林显河1,陈海宏2

(1.深圳市计量质量检测研究院,广东 深圳 518131; 2.揭阳市质量计量监督检测所,广东 揭阳 515300)

摘要:文中介绍了织物的变形机理,分析了不同规格陪洗布对针织物水洗尺寸变化率的影响。以纯棉(包括纬平针、卫衣、珠地组织)以及涤棉(比例为65:35)(包括纬平针、卫衣、珠地组织)为试样,按照GB/T8629—2001《纺织品 试验用家庭洗涤和干燥程序》中规定的3种不同规格陪洗布进行试验。结果表明,相对于大尺寸陪洗布,小尺寸陪洗布对纯棉针织物的影响更大,而大尺寸陪洗布能有效减少对针织物尺寸稳定性的影响;另外,由于纯棉陪洗布不容易产生静电作用,不易使试样纱线产生弯曲变形和滑移,因此大尺寸纯棉陪洗布更有利于针织物的尺寸稳定性。

关键词: 陪洗布; 针织物; 尺寸稳定性; 纱线变形; 水洗

中图分类号:TS 187 文献标志码:A 文章编号:1000-4033(2012)09-0059-03

水洗尺寸变化率是衡量针织 服装品质的重要指标。针织物在洗 涤时处于无张力的湿热状态,纤维 和纱线会产生松弛收缩,具有回复 到原来稳定状态的趋势,从而影响 了织物的尺寸稳定性[1-12]。实践工 作中发现,不同规格的陪洗布对针 织物水洗尺寸变化率有很大的影 响,而在现行的国家检测标准中并 没有规定使用何种陪洗布,造成不 同试验室之间的习惯做法和检测 结果不一致。本文根据国家标准 GB/T 8629—2001《纺织品 试验用 家庭洗涤和干燥程序》进行试验, 研究不同规格陪洗布对针织物尺 寸稳定性的影响,并对陪洗布的选 择提出建议。

1 织物变形机理

针织物在使用和洗涤干燥的

过程中,会受到不同方向、各种形式的外力作用,这些作用靠纱线和纱线间的摩擦力来承受。但是,作用于针织物的外力转换成对纱线的作用并不是相互对应的,例如:对针织物的拉伸作用能转换成对纱线的拉伸、弯曲、压缩和纱线间的摩擦等作用。针织物在受到远小于断裂负荷的外力连续或重复作用下,会产生蠕变现象和疲劳现象,从而造成针织物几何尺寸的变化.直至被破坏。

对于陪洗布而言,其成分、结构 及克质量均会对针织物的水洗尺寸 稳定性造成影响,这是由于针织物 在拉伸过程中其线圈形状会改变造 成的。以纬平针组织为例,横向拉伸 时,针织物的沉降弧变直变长、圈柱 变短,纱线发生了一定程度的转移。 使用不同规格的陪洗布,针织物所 受冲击力随陪洗布克质量的不同而 有所变化;在洗涤过程中产生的摩擦力会有所不同;在干燥过程产生 摩擦静电力也会有所不同。而在外力去除后,线圈回复成原有形状的 过程也要克服纱线间的摩擦力,摩擦力的大小取决于纱线间的压力和 纱线的摩擦系数 μ 。在一定的范围内,对于结构紧密和纱线摩擦系数 μ 较小的针织物,当外力去除后,线圈的形态比较容易回复,有利于针织物尺寸稳定性的提高。

2 试验

2.1 试样

为了更明显地比较陪洗布对 针织物尺寸稳定性的影响,选用水 洗尺寸变化率较大的织物为试样, 其基本参数如表1所示。

2.2 试验材料与设备

2.2.1 试验材料

无磷 ECE 标准洗涤剂 (不含 荧光增白剂);

- 3种陪洗布规格为[12]:
- a. 陪洗物 R_1 为纯聚酯变形长 丝针织物,克质量为(310±20) g/m^2 ,由 4 片织物叠合而成,沿 4 边缝合,角上缝加固线,尺寸为(20±4) $cm\times(20\pm4)$ cm,每片缝合后的陪洗物质量为(50±5) g;
- b. 陪洗物 R_2 为涤棉(比例为 50:50)平纹漂白梭织物,克质量为 (155±5) g/m^2 ,尺寸为(92±5) $cm \times$ (92±5) cm;
- c. 陪洗物 R_3 为纯棉漂白梭织物,克质量为(155±5) g/m^2 ,尺寸为(92±5) $cm \times (92\pm5)$ cm_{\circ}

2.2.2 试验设备

Electrolux FOM71CLS 全自动 水洗尺寸变化率试验机(A 型洗衣 机)。

2.3 试验方法与条件

选择 GB/T 8629—2001 《纺织品 试验用家庭洗涤和干燥程序》中的 5A 程序进行水洗试验,洗涤和冲洗中的搅拌力度正常,洗涤水温为 (40 ± 3) °C,洗涤时间 15 min,漂洗 4次,分别为 3、3、2、2 min,然后脱水 5 min。干燥时使用翻滚烘干,排气口温度 \leq 60 °C,干燥时间 60 min。

2.4 水洗尺寸变化率的测定

根据 GB/T 8630—2002《纺织品 洗涤和干燥后尺寸变化的测定》,水洗后尺寸变化率 V 的计算如式(1):

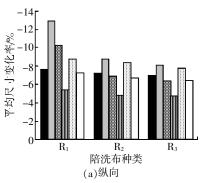
 $V = (M_2 - M_1)/M_1 \times 100\%$ (1) 式中: M_1 为试样水洗前的尺寸; M_2 为试样水洗后的尺寸。

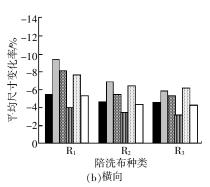
取相同位置的尺寸变化率的 平均值作为数据,精确到 0.1%。以 负号(-)表示尺寸减少(收缩),以 正号(+)表示尺寸增大(伸长)。

3 结果与讨论

3.1 试验结果

在不同陪洗布的条件下,试样


水洗尺寸变化率结果如表 2 所示, 纵、横向平均尺寸变化率趋势分析 如图 1 所示。


表 1 试样的基本参数

织物种类		试样序号	线密度×2/	纵密/	横密/	
			tex	[横列·(2.54 cm) ⁻¹]	[纵行·(2.54 cm) ⁻¹]	
纯棉	纬平针	A1	19.5	12	12	
		A2	19.5	17	16	
		A3	19.5	24	22	
	卫衣	B1	19.5	13	12	
		B2	19.5	18	15	
		В3	19.5	26	25	
	珠地	C1	19.5	13	11	
		C2	19.5	18	17	
		С3	19.5	25	23	
涤棉(比例 为 65:35)	纬平针	D1	19.5	13	12	
		D2	19.5	17	15	
		D3	19.5	23	23	
	卫衣	E1	19.5	14	13	
		E2	19.5	19	16	
		E3	19.5	25	25	
	珠地	F1	19.5	14	12	
		F2	19.5	19	17	
		F3	19.5	24	22	

表 2 试样水洗尺寸变化率结果

	水洗尺寸变化率/%							
试样序号	陪洗布 R ₁		陪洗布 R ₂		陪洗布 R ₃			
	纵向	横向	纵向	横向	纵向	横向		
A1	-8.0	-5.5	-7.3	-4.9	-7.3	-4.6		
A2	-7.6	-5.3	-7.1	-4.7	-6.9	-4.7		
A3	-7.3	-5.3	-7.0	-4.3	-6.6	-4.2		
B1	-13.1	-10.0	-9.0	-7.2	-9.0	-6.6		
B2	-12.5	-9.8	-7.8	-6.5	-7.3	-5.9		
В3	-12.1	-8.0	-7.6	-5.8	-7.2	-5.0		
C1	-10.6	-8.5	-7.7	-6.0	-7.1	-6.6		
C2	-10.5	-8.3	-6.8	-5.3	-6.6	-5.2		
C3	-9.2	-7.5	-5.0	-4.9	-5.1	-4.4		
D1	-5.8	-4.2	-5.1	-3.8	-5.1	-3.5		
D2	-5.4	-3.9	-4.7	-3.4	-4.6	-3.1		
D3	-5.1	-3.5	-4.5	-3.1	-4.5	-2.8		
E1	-9.1	-8.0	-8.6	-7.0	-8.3	-6.5		
E2	-8.8	-7.6	-8.2	-6.6	-7.9	-6.1		
E3	-8.3	-7.3	-7.8	-6.2	-7.4	-5.7		
F1	-7.5	-5.7	-7.0	-4.7	-6.9	-4.6		
F2	-7.1	-5.3	-6.6	-4.4	-6.5	-4.2		
F3	-6.7	-4.8	-6.2	-3.9	-6.2	-3.8		

■.A;□.B;■.C; ■.D; □.E;□.F_○

图 1 陪洗布对针织物尺寸变化率的影响

3.2 陪洗布的影响

3.2.1 对不同成分针织物尺寸稳 定性的影响

由图 1 可知,对于纯棉针织物 来说, $R_1(A,B,C)>R_2(A,B,C)>R_3$ (A、B、C); 对于涤棉 (比例为 65: 35) 针织物来说,R₁ (D、E、F)>R₂ (D、E、F)>R3(D、E、F)。说明相对于 大尺寸陪洗布 R2和 R3、小尺寸陪 洗布 R₁ 对针织物的影响更大。同 时,在纯棉针织物中R₁与R₂或R₃ 的缩率差明显大于涤棉针织物的, 如纯棉卫衣试样 B, 其纵向平均尺 寸变化率 R₁、R₂、R₃分别为-12.6%、 -8.1%、-7.8%,缩率差分别为 4.5% 和 4.8%; 涤棉(比例为 65:35) 卫衣 试样 E,其纵向平均尺寸变化率 R,、 R₂、R₃分别为-8.7%、-8.2%、-7.9%, 缩率差分别为 0.5%和 0.8%,说明 小尺寸陪洗布 R₁ 对纯棉针织物 的影响尤为明显。因此,在实际洗 涤中应选择大尺寸陪洗布 R2 或 R₃更有利于针织物的尺寸稳定 性。

3.2.2 对不同结构针织物尺寸稳 定性的影响

由图 1 可知,对于纬平针组织来说, $R_1(A,D)>R_2(A,D)>R_3(A,D)$;对于卫衣组织来说, $R_1(B,E)>R_2(B,E)>R_3(B,E)$;对于珠地组织来说, $R_1(C,F)>R_2(C,F)>R_3(C,F)$,说明陪洗布 R_1 对针织物尺寸

稳定性影响最大, 陪洗布 R₃ 对于 针织物尺寸稳定性影响最小,且数 据显示,R₂、R₃ 对针织物的缩率的 影响接近,这同样也说明了大尺寸 陪洗布(R₂、R₃)能有效减少对针织 物尺寸稳定性的影响。

3.2.3 试验分析

产生前述结果的原因可能是陪洗布 R₁ 的尺寸在 3 种规格陪洗布中最小,在洗涤和干燥过程中对试样的冲击力更大,使得织物的纱线更容易产生弯曲变形和滑移;而且陪洗布 R₁ 使用的是纯聚酯变形长丝针织物,其在干燥过程中容易产生静电作用,使试样所受到的作用力更大,进一步促使纱线产生弯曲变形和滑移。同理,相对于涤棉(比例为 50:50) 梭织布 R₂, 陪洗布 R₃ 使用的是纯棉梭织布,不容易产生静电。因此,在实际洗涤中选择大尺寸陪洗布 R₃ 更有利于针织物的尺寸稳定性。

4 结论

分析了不同陪洗布对不同成 分和组织结构针织物的尺寸稳定 性影响,并探讨了其影响机理,得 到了以下结论:

a. 相对于大尺寸陪洗布 R_2 和 R_3 , 小尺寸陪洗布 R_1 对纯棉针 织物的尺寸稳定性影响更大:

b. 大尺寸陪洗布 (R₂、R₃)能 有效减少对针织物尺寸稳定性的 影响:

c. 在实际洗涤中应选择大尺 寸纯棉陪洗布 R₃更有利于针织物 的尺寸稳定性。

参考文献

- [1]于伟东. 纺织材料学[M]. 北京:中国纺织出版社,2006:326-336.
- [2]柳世龙. 提高纬编针织物尺寸稳定性的探讨[J].上海纺织科技,2001,29(8):39-40.
- [3]徐先林,华福祥. 纬编针织物组织结构对尺寸稳定性的研究[J].天津纺织科技,2000,39(2):34-35.
- [4]张永久,冯爱芬. 织物性能和水洗 对纬编针织物缩水率的影响[J].国外 纺织技术,2004(4):8-9.
- [5]徐枫,胡玉群,陈江丽.家用洗涤过程对氨纶纬编针织物弹性性能的影响[J]. 浙江理工大学学报,2007,24(3):233-234.
- [6]Herath C N, Kang B C, Jeon H Y. Dimensional stability of cotton-spandex interlock structures under relaxation [J]. Fibers and Polymers, 2007, 8(1):109–110. [7]Park S W, Collie S, Herath C N. Dimensional stability of single jersey fabrics of lincLITE and conventional yarns II fabric dimensional changes [J]. Fibers and Polymers, 2007, 8(1):76–78.
- [8]王露芳,俞震东,吴微微. 大豆纤维针织物耐洗性能[J]. 丝绸,2010(8):15–18. [9]Sharma I C,Ghost S,Gupta N K. Dimensional and physical characteristics of single jersey fabrics [J]. Textile Research Journal, 1985,55(3):152–153.
- [10] Marmarali A B. Dimensional and physical properties of cotton/spandex single jersey fabrics[J]. Textile Research Journal, 2003, 73(11):12–13.
- [11]邱红娟,郭宇微,张伟. 针织牛仔面料的尺寸稳定性测试分析[J]. 纺织科技进展,2008(8):55-56.
- [12]GB/T 8629—2001 纺织品 试验用家庭洗涤和干燥程序[S].

收稿日期 2012年5月24日